Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121629, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643642

RESUMO

Despite advances in wastewater treatment plant (WWTP) efficiencies, multiple contaminants of concern, such as microplastics, pharmaceuticals, and per- and poly-fluoroalkyl substances (PFAS) remain largely untreated near discharge points and can be highly concentrated before they are fully mixed within the receiving river. Environmental agencies enforce mixing zone permits for the temporary exceedance of water quality parameters beyond targeted control levels under the assumption that contaminants are well-mixed and diluted downstream of mixing lengths, which are typically quantified using empirical equations derived from one-dimensional transport models. Most of these equations were developed in the 1970s and have been assumed to be standard practice since then. However, their development and validation lacked the technological advances required to test them in the field and under changing flow conditions. While new monitoring techniques such as remote sensing and infrared imaging have been employed to visualize mixing lengths and test the validity of empirical equations, those methods cannot be easily repeated due to high costs or flight restrictions. We investigated the application of Lagrangian and Eulerian monitoring approaches to experimentally quantify mixing lengths downstream of a WWTP discharging into the Rio Grande near Albuquerque, New Mexico (USA). Our data spans river to WWTP discharges ranging between 2-22x, thus providing a unique dataset to test long-standing empirical equations in the field. Our results consistently show empirical equations could not describe our experimental mixing lengths. Specifically, while our experimental data revealed "bell-shaped" mixing lengths as a function of increasing river discharges, all empirical equations predicted monotonically increasing mixing lengths. Those mismatches between experimental and empirical mixing lengths are likely due to the existence of threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are unaccounted for by the one-dimensional empirical formulas. Our results call for a review of the use of empirical mixing lengths in streams and rivers to avoid widespread exposures to emerging contaminants.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Rios/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Movimentos da Água , Modelos Teóricos , Eliminação de Resíduos Líquidos , Águas Residuárias
2.
Water Res ; 245: 120577, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688858

RESUMO

Most freshwater aquatic studies rely on Eulerian monitoring, i.e., water quality and quantity are monitored using grab samples or semi-continuous sensors deployed at fixed cross-sections. While Eulerian monitoring is practical, it provides a limited understanding of spatial and temporal heterogeneity. We designed and built The Navigator, a Lagrangian (i.e., along a flow path) monitoring system that offers cost-effective solutions for in-situ, real-time data collection in surface freshwater ecosystems. The Navigator features a suite of technologies, including an autonomous surface vehicle with GPS and LTE connectivity, water quality sensors, a depth sonar, a camera, and a webpage dashboard to visualize real-time data. With these technologies, The Navigator provides insight into where, how, and why water quality and quantity change over time and space as it moves with the current or follows user-specified pathways. We tested The Navigator monitoring water quality parameters at high spatial-temporal resolution in multiple surface water bodies in New Mexico (USA) to: (1) identify water quality changes associated with land use changes along a 7th-order reach in the Rio Grande, (2) identify the fate of wildfire disturbances ∼175 km downstream of a burned watershed affected by the largest wildfire ever recorded in the state, (3) monitor the water quality of a recreational fishing pond in the City of Albuquerque. Our three successful tests confirm that The Navigator is an affordable (USD 5,101 in 2023) monitoring system that can be used to address questions involving mass and energy balances in surface waters.

3.
Chemosphere ; 288(Pt 1): 132489, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626652

RESUMO

We evaluated groundwater quality, pollution, and its effects on human health in the eastern part of the Lake Urmia basin, the largest lake in the Middle East. Although groundwater quality is suitable for drinking and irrigation purposes, an index-based approach quantifying heavy metal pollution revealed that most sampling sites exhibited moderate to high pollution levels in the northern and southern regions. The positive matrix factorization (PMF) and principal component analysis-multi linear regression (PCA-MLR) receptor models suggest that the main contributors to the observed groundwater pollution, expressed as percentages by model, were: lake water infiltration and dissolution of minerals and fertilizers (46% and 63%), infiltration of leachates from solid wastes (29% and 15%), mixing with industrial-municipal wastewaters (18% and 13%), and vehicular emissions (7% and 9%). The PMF model indicated better correlations between observed and predicted concentrations (R2 = 0.96) than the PCA-MLR (R2 = 0.89). Our results from the human health risk assessments (HHRA) highlight non-carcinogenic and carcinogenic risks for Pb and Cr, respectively. Also, the PMF-based assessment of human health risk indicated that wastewaters and solid waste leachates are responsible for the cancer risk from Cr for children.


Assuntos
Água Subterrânea , Lagos , Monitoramento Ambiental , Humanos , Modelos Lineares , Análise de Componente Principal , Medição de Risco
4.
Nat Commun ; 12(1): 2484, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931640

RESUMO

Wildfires are increasing globally in frequency, severity, and extent, but their impact on fluvial networks, and the resources they provide, remains unclear. We combine remote sensing of burn perimeter and severity, in-situ water quality monitoring, and longitudinal modeling to create the first large-scale, long-term estimates of stream+river length impacted by wildfire for the western US. We find that wildfires directly impact ~6% of the total stream+river length between 1984 and 2014, increasing at a rate of 342 km/year. When longitudinal propagation of water quality impacts is included, we estimate that wildfires affect ~11% of the total stream+river length. Our results indicate that wildfire activity is one of the largest drivers of aquatic impairment, though it is not routinely reported by regulatory agencies, as wildfire impacts on fluvial networks remain unconstrained. We identify key actions to address this knowledge gap and better understand the growing threat to fluvial networks, water security, and public health risks.

5.
Sci Total Environ ; 729: 138443, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498151

RESUMO

Urban surface runoff from storms impacts the water quality dynamics of downstream ecosystems. While these effects are well-documented in mesic regions, they are not well constrained for arid watersheds, which sustain longer dry periods, receive intense but short-lived storms, and where stormwater drainage networks are generally isolated from sewage systems. We used a network of high-frequency in situ water quality sensors located along the Middle Rio Grande to determine surface runoff origins during storms and track rapid changes in physical, chemical, and biological components of water quality. Specific conductivity (SpCond) patterns were a reliable indicator of source, distinguishing between runoff events originating primarily in urban (SpCond sags) or non-urban (SpCond spikes) catchments. Urban events were characterized by high fluorescent dissolved organic matter (fDOM), low dissolved oxygen (including short-lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response. In contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags, and consistent pH sags. Principal component analysis distinguished urban and non-urban events by dividing physical and biogeochemical water quality parameters, and modeling of DO along the same reach demonstrated consistently higher oxygen demand for an urban event compared to a non-urban event. Based on our analysis, urban runoff poses more potential ecological harm, while non-urban runoff poses a larger problem for drinking water treatment. The comparison of our results to other reports of urban stormwater quality suggest that water quality responses to storm events in urban landscapes are consistent across a range of regional climates.

6.
Environ Sci Technol ; 51(21): 12385-12393, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29017012

RESUMO

The reactive transport of uranium (U) and vanadium(V) from abandoned mine wastes collected from the Blue Gap/Tachee Claim-28 mine site in Arizona was investigated by integrating flow-through column experiments with reactive transport modeling, and electron microscopy. The mine wastes were sequentially reacted in flow-through columns at pH 7.9 (10 mM HCO3-) and pH 3.4 (10 mM CH3COOH) to evaluate the effect of environmentally relevant conditions encountered at Blue Gap/Tachee on the release of U and V. The reaction rate constants (km) for the dissolution of uranyl-vanadate (U-V) minerals predominant at Blue Gap/Tachee were obtained from simulations with the reactive transport software, PFLOTRAN. The estimated reaction rate constants were within 1 order of magnitude for pH 7.9 (km = 4.8 × 10-13 mol cm-2 s-1) and pH 3.4 (km = 3.2 × 10-13 mol cm-2 s-1). However, the estimated equilibrium constants (Keq) for U-V bearing minerals were more than 6 orders of magnitude different for reaction at circumneutral pH (Keq = 10-38.65) compared to acidic pH (Keq = 10-44.81). These results coupled with electron microscopy data suggest that the release of U and V is affected by water pH and the crystalline structure of U-V bearing minerals. The findings from this investigation have important implications for risk exposure assessment, remediation, and resource recovery of U and V in locations where U-V-bearing minerals are abundant.


Assuntos
Mineração , Urânio , Arizona , Minerais , Vanádio , Eliminação de Resíduos Líquidos
7.
Environ Sci Technol ; 50(16): 8485-96, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27438783

RESUMO

Closing nutrient loops in terrestrial and aquatic ecosystems is integral to achieve resource security in the food-energy-water (FEW) nexus. We performed multiyear (2005-2008), monthly sampling of instream dissolved inorganic nutrient concentrations (NH4-N, NO3-N, soluble reactive phosphorus-SRP) along a ∼ 300-km arid-land river (Rio Grande, NM) and generated nutrient budgets to investigate how the net source/sink behavior of wastewater and irrigated agriculture can be holistically managed to improve water quality and close nutrient loops. Treated wastewater on average contributed over 90% of the instream dissolved inorganic nutrients (101 kg/day NH4-N, 1097 kg/day NO3-N, 656 kg/day SRP). During growing seasons, the irrigation network downstream of wastewater outfalls retained on average 37% of NO3-N and 45% of SRP inputs, with maximum retention exceeding 60% and 80% of NO3-N and SRP inputs, respectively. Accurate quantification of NH4-N retention was hindered by low loading and high variability. Nutrient retention in the irrigation network and instream processes together limited downstream export during growing seasons, with total retention of 33-99% of NO3-N inputs and 45-99% of SRP inputs. From our synoptic analysis, we identify trade-offs associated with wastewater reuse for agriculture within the scope of the FEW nexus and propose strategies for closing nutrient loops in arid-land rivers.


Assuntos
Fertilizantes/análise , Rios , Poluentes Químicos da Água/análise , Irrigação Agrícola , Agricultura , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...